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SUMMARY

As part of an approach to a better understanding of the motion of
real flulds in flow machinery, two-dimensional, Iincompressible, non- ZI
viscous shear flows in a 90° elbow have been investigated. Bolutions '
ere presented for linear and sinusoidal veloclty distributions across
the inlet of the elbow. The solutions with linear inlet velocity dis- -
tributions indicate that as the negative vorticity of the flow increased:
(1) the static-pressure drop through the elbow decreased, (2) the local
deceleration along the outer channel walls increased, and (3) the mag-
nitude of the velocltles on the channel walls changed greatly, but the
local pressure coefficlent rose only gredually and the difference in
Pressure coefficlent at corresponding points on the two walls waes prac-
tically unchanged. In the case of a sinusoildsl inlet veloci'by distri-
bution local decelera.tions occurred on both walls.

TINTRODUCTION

As part of an epproach to a better understanding of the motion of
real fluids in flow machinery, two-dimensional, incompressible, non-
viscous shear flows in a 90° elbow have been investigated at the NACA
Lewls lgboratory. For real, viscous fluids the velocity dlsitribution
upstream of the elbow is nonuniform and therefore the fluld motion is
rotational. Such rotational, or shear, flows can develop both normal to
eand in the plane of the elbow. If the shear flow develops normal to the
Plene, so that the vortlcity vectors are peraliel to the plane, three- - .
dimensionsl secondary flows develop in the elbow (references 1 to 3).
If, however, the shear flow develops in the plane of the elbow, so that’
the vorticlty vectors are normal to the plane, the shear flow remalns
two-dimensional and in the plane of the elbow. It is thils latter two- T
dimensional shear flow that is investligated in this report. The purpose .
of the investigation 1s to determine the effects of this type of shear
flow on the velocity and pressure distributions in a 90° elbow. .

Two-dimensionsl potentisl solutlons for irrotational flow in chan- .
nels are well known (references 4 and 5, for example), and solutions for .
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two-dimensional shear flow about isclated bodies have been obtalned _
(references 6 and 7, for example), but no solutions are known for two-
dimensionel sheer 'flow in channels. 1In this report such solutions are
presented for incompressible £low in a 90° elbow.

Although the shear flow is considered to have been generated by
viscous forces acting on the fluld upstream of the reglon of turning, it
is assumed that in the immediste vieinity of the region of turning,
where the solutions are obtained, the viscous forces are small and can
be neglected. BSolutions are obtained for two types of veloclty distri-
bution upstream of the region of turning: llnear and sinusoldel distri-
butions. The streamlines and the veloclty and pressure distributions of
these solutions are compared with those of 'l.'.he potential solution from
reference 8.

METHOD OF ANALYSIS
The differential equatlon for the distribution of shear flow in any
two-dimensional channel is developed fram Beirnoulli's equation, and from
the equations of motion and continuity. The flow is assumed to be )
Incompressible and nonviscous. '

Equations of motion. - The equations of motion are

_g%-ug}:f—vg—; ) (13-)-
R T (1)

where g 1s the acceleration due to gravity; p, the fluld welght
density; p, the static pressure; x and Yy, Cartesian coordinates;
and u and v, the veloclty components in the x- and y-directions,
respectively. All.symbols are defined in appendix A. All varilebles are
made dimensionless by expressing them as ratios of characteristic quan-
tities In the folloiring menner: _ .

P p . ' - (lc)

2
p(q-eg!av)

where de,av is the arithmetic average of the resuyltant veloeity q
across the chennel exlt, downstream at infinity.
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u
Um \
%e,av
V o= T
Qe,av >
(14)
x
X = —
Ve
Y m % J
where W, 1s the wldth of the channel at the exit.
After division by (—qzeﬂ-)—z equations (la) and (1b) became in
We
dimensionless form
_§-2U%+2V§% (29')
~————SPernoulll's equation. - Bernoulli's equation states
D 2
'5 + %g— = h (3)

where h 1s the Bernoulli constant (constant along a streamline). The
Bernoulll constant &.s made dimenslonless by expressing it as 8 ratio

( )
of h %o -q;e-% and the veloclty 1s expressed nondimensionally as
e ratio of q o de,av* Thus,

H-f(—-—z]— | (3e)

2
( )
Equetion (3), having been divided by -—q%ai—

sionel form,

» becomes, in nondimen-

P+Q@wH (4)
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Continuity equation. - The continulby equation in dimensionless
form becomes

?ﬁ? ?ﬁv-o - (5)

Equation (5) 1s satisfied by & stream func'b:!.on ¥, which is defined by
the followlng relations .

(62)

Also, from equation (6a), in the direction of K

Fuq | (6b)

where X 1s distance (dimensionless, ex:preseed. as ratio of W) a.long

the outer normal to a streamline. o -

Differential eguation. - From equation (4) with QF written as

?2 42

oP U oV _H (7a) T

E+ZU&+ZVE =

§+2Ug-‘1+zv§% gfr-[ (7o)

From equations (2a) and (7a)

“%-9-3 -
and, similarly, from equations (2b) and (7Db)
v _dU ) BH '

Because H 1is a function of V¥ only,

d _ dvaE & (9a)

X" "X~ Vag
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and

OH JVd4H dg .

X "FTa~' (b)
From equations (6a), (8a), and (9a)

Py, azv .

W TID =0

Equetlion (10) 1s the d:liferen'bia.l equation for the distribution of the
stream function in a two.dimensional chennel with shear flow. Equa-
tion (10) can also be derived from equations (6a), (8b), and (9b).

Vorticity. - The vorticity { of the shear flow 1s defined by

e~ -5% (22)

which from equation (6a) becomes

Ly Py )
t--(F * oF
Thus; fram equation (10) the vortlcity is equal to - % % which is
constant along streamlines so that
1l dH 1l fdH
t= - 355 - 7 (&), (112)

But, becasuse the flow 1s parsllel at the inlet,

&), - &). &)

end from equation (4) with P; constant

= (&), ~ (&),

so that, after introduction of equation (6b), equation (1la) becomes

-g = (%)1 (110)
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Therefore, the vortlicity at & polnt on a streamline anywhére in the
flow field can be determined by equation (11b) from the velocity gra-
dient normel to the streamline at the inlet. '

METHOD OF SOLUTION

The differential equation (10) was solved by relexation methods for
the examples of this report. In order to facllitate the solutions, the
flow field in the XY-plane was transformed onto a field the coordinates
of which are the streamlines end veloclty potentlal lines for irrota-
tional flow. B

Transformation of, coordinates. - For Irrotational flow the stream
function and velocity potential,” 1 and t respectively, are defined

by
g}%“g’%'t’o
g?{." 'g%"vo n

where the subscript o Indicates irrotational flow. Also, -from equa-
tion (12a), in the direction of N, and B8p -

e

where Qg i1s the resultant velocity for irrotational flow and where B
is the dlstance (dimensionless, expressed as ratio of we) along stream-
lines. From equation (12b), if 4 is zero along the right channel wall
when faced in the direction of flow, n 1s 1.0 along the left wall
(because Q, and AN are 1.0 at the exlt of .the channel, downstreeam
at infinity). Thus, because ¢ extends from minus to plus infinity,
the flow fleld in the En-plane is an infinite strip of unit width.

(12a)

Differential equation. - The differential equation (10) transformed
onto the fn-plene becomes (appendix B)

&y v 1 am . (13
zt ez~ __Zar )
ot on 2Q,
Velocity components. - The velocity Q &nd its components QE and
Q, inthe f and 7 directions, respectively, are obtained from the
dfstribution of ¥ by (appendix C)

a= Mo +o? (140)
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where
] Qg = QO g;g (léb) )
SRR - (14e)

The veloclty components U and V are related to Qg and Q"’l by
(appendix C and fig. 1)
Uan cos Go-Qnsineo
(15)
Ve Qg sin 8, + Q,q cos 6,
where 6, 1s the local direction for irrotationsl flow (fig. 1).

Boundery conditions. - The stream function ¥ 18 constent along
each of the chamnel walls. If ¥ 1s zero along the right wall (n=0),
then ¥ is 1.0 along the left wall (n=1.0), because from equation (6b)
and from the definition of @

1.0
AY o Qd¥ = 1.0

across the channel et the exit downstream st infinity.

In theory the flow fleld extends to e in the direction of (. In
Prectice, however, the relaxation solutions converge to essentially uni-
form flow conditions within a reasonsbly short distance from the region

of turning.

Relaxetion solutions. - The numerical examples were solved in the
¢n-plane by relaxation methods (references 4 and 9). A squere grid with
& spacing of 1/8 was used. The flrst example was solved using s three-
point system for computing the derivetives, and the value of ¥ at esch
grid point was relaxed to & unit change in the f£ifth place. The second
example was solved using a flve-point system for computing the derivetives -
and the value of ¥ at each grid point was relaxed to a unit change in
the fourth plece. An investigation of the errors involved in the two
methods of approximation to the derivatives showed campersable acguracy
for the two solutions.
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The channel investigated by the two numerlcal examples in this
repart is the 90° elbow {89.36°) of reference 8. The elbow was designed
in reference 8 for incompressible, potential flow with a prescribed |
velocity distribution that has noc local decelerations along the channel
walls. The transformed coordinates ¢,7n and the values of Qg

required for the solution of equation (13) are tabulated in reference 8.°

Numerical E:m.mple I

Inlet velocity distribution. -~ In exa.mple I a 1inea.r distri‘bution
of velocity across the inlet was prescribed such that the velocity Q
varied from 0.25 on the inner well (wall with smaller radius of curvature
and at which 7 i1is 0) to 0.75 on the outer wall (n eguals 1.0).
(See fig. 2.) Thus,

Qy = 0.25 + 0.50 1y ' (16a)

For thie inlet veloclty dilstribution the.distribution of E is
(eppendix D)

Hw Hy + I . . (16b)
where is the arbitxary velue of H &long the inner wall. Therefore,
the vorticity of the shear flow becomes :

1 dE 1 )
{=-5a0="7 . (16c)

so that for a linear inlet veloclty distribution the vorticity is every-
where constant (and negetive) in the channel. Also, for the linear inlet
veloclty distribution glven by equation (165.) it can bhe shown that
(appendix D)

¥, = 0.5 (ny +n,%) - (164)
¥, = 0.875 1o + 0.125 1.2 (168)

.and.
Qe = 0.875 + 0.25 14 - (181)

The exit velocity distribution is compared with the inlet distribution
in figure 2.
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Streamlines. - In figure 3 the streamlines for the shear flow of
exsuple I are presented in the physical XY-plane with the ¢,n grid
system superposed. The spacing of the streamlines decreases linearly at
both inlet and exit, indicating a linearly increasing variation in
veloclity at both positions, because the spacing of the streamlines is
inversely proportional to the velocity. The velocity is more nearly
uniform at the exit and, therefore, at the exlt the streamlines V¥ of
the shear flow are closer to the streamlines 1 of the potential flow
then at the inlet. : :

Yeloclity distribution. - Lines of constant resultant veloclty Q
are presented in figure 4. The velocity caomponent Q..,.' normal to

potential flow streamlines is shown in figure 5. This velocity camponert

is relatively small throughout the channel and disappears upstream and.
downstream of the reglon of turning and along the channel walls. Two
points of relative maximum occur. These points are explained as follows.

From filgure 1
Q= Q sin (6 ~ 6;) (17)

t

so that relatlve maximums for Q"’I occur when the product of Q and
sin (6 - 6y) 1s maximum. The first maximum occurs in a region

(n =0.375, § =0.625) where (6 - 6,) 1s large (fig. 3) and the sec-
ond meximum occurs in & region (n = 0.5, ¢ ®2.75) where Q is large.

The veloclties along the inner and outer walls are plotted against
{ in figure 6-for example I and for the potentlal flow. The gradilents
of the velocity distributions for the two types of flow are similer.
However, the megnitudes of the velocity are different. On the outer wall
the velocltles for example I are higher than for the potential flow
solution, whereas on the inner wall the velocities for example I are
lower. These veloclty distributions result from the prescribed inlet
veloclty distribution which, as indicated by equation (11b), prescribes
the vorticity throughout the channel. Thus the eirculation around any
closed path, which eirculation is zero for potentisl flow, is equal to
tA, vhere A 1s the area of the reglon enclosed by the path. This |
expression for the eirculstion comes directly from Stokes?! theorem and -
equations (5) and (11). Although no local deceleratioms occur along the
channel walls for the potential flow, a slight deceleration occurs along
the outer wall for the shear flow, example T.

The pressure coefficlent along the inner and outer walls for

example I and for the potentlal flow are presented in figure 7. The
presgure coefficlient is defined as

l (ae )ZEI“P-]?i | (18)
p 8 )
%sv ;
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The pressure coefflclent for example I 1s greater along both the inner
and outer walls thaer along the corresponding walls for potential flow,
but the difference in pressure coefficlents on the two walls at corre-
sponding values of § 1s about the same for both types of flow, indi-
cating that the turning angle of the mean flow 1s asbout the same. It is
interesting to note that for exsmple I in the vieinity of & equals 4.5
the pressure along the outer wall is less than along the inner wall,
thus indiceting an overturning of the average flow Just shead of this
region. The exit pressure coefflclent is greater for example I than for
the potential flow solution, indiceting e smaller pressure drop through
the elbow for shear flow. Physlcally, this smaller pressure drop for
example I 1s explained by the fact that, because of the nonuniform inlet
veloclty for exemple I, the average value of Hj (equation (4)) must be
greater for example I than for the potentlial flow solution. But the
linear exit velocity dilstribution for example I is more nearly like that
for the potential flow solution (fig. 2); and, therefare, because the
average velue of H 1s higher for example I, P, 1is also higher.

Numerical Example IL

Inlet veloclty distribution. - In example IT & sinusoidal distri-
bution of velocity across the inlet was prescribed (fig. 8) such that
the velocity Q 1s zero on both wells and the arithmetic average value
of Q@ 1s 0.5 (same as exsmple I). Thus, :

Qy = -E sin nq : (19a)

This sinusoldal varistion in velocity approximates the parabolic distri-
bution for fully developed leminar flow in & straight duct with parallel
walls. For the inlet veloecity distribution given by equation (19a) the

distribution of H is (appendix E)

H—Ho+§(w-"ﬂz) (19b)

Therefore, the vorticlity of the shear flow bedomes _'

2 -
l dH ELd ™

so that for & sinusoidal inlet veloclty distribution the vorticity is a
linear function of VY. Also, for the sinusoidal Inlet veloelty distri-
bution glven by equation (19a) it can be shown that (appendix E)

1
Ti -5 (1L - cos :r.ni) (194)

vl
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Vo = % (L - cos %ﬂe + sin g-qe) (19e)

q = 2 (sin %‘qe + cos %qe) (19£)

The exlt velocity distribution i1s compared with the inlet distribution
in flgure 8. ]

Streamlines. - The streamlines of exsmple IT are presented in fig-
ure 3. An eddy has formed on the outer wall and extends from § & -7.25
to § ®2.0. (In theory thls eddy extends upstream to minus infinity
but becomes extremely narrow so that within the accuracy of relexation .
methods 1t disappears at ¢ % -7.25.) This eddy occurs because, as in c—
exemple I, the veloclty decelerates along the outer wall. Because the -
velocity was Initislly zero at this wall, the flow therefore reverses
itself and ean eddy 1s formed. Three stegnation points occur for the
eddy: +two on the outer wall (one downstream at infinity, thearetically,
and the other at § approximately equal to 2.0) and & third in the
center of the eddy near ¢ & -0.375. The maximum veloeitles occur near
‘the center of the channel as indicated by the narrow spacing of the
streamlines.

Velocity distributlon. - ILines of constant resultant velocity Q
are presented in figure 10. The veloclty component Qq normal to
rotential flow streamlines is shown in figure 11. This distribution of
appears similar to that for example I (fig. 5). However, the mag- .
tudes of Q"l are greater-in example IT and both positive and negative .
velues exist. A minimum point occurs at ¢ = 0.375, n % 0.250 and a
meximm at £ % 2.750, n % 0.625. As for example I, these polnts occur
far reasons already dilscussed in connection with equation (17). This
veloclty component changes sign because the angle (6 - 6,) (see fig. 1)
changes sign as indicated in figure 9 where the streamlines for the shear
flow ere inclined towerd the imner wall with respect to the potential S
streamlines (constent 1) in the first half.of the elbow and are in
i1nclined toward the outer wall in the second half. A line of zero QTI
occurs along which the streamlines for shear flow are parallel to the .
streamlines for potential flow. -

The velocitles along the inner and outer walls are plotted against
£ 1n figure 12 for example IT and for the potential flow solution. For
‘the shear flow solution, the velocities on the inner and outer wells con- :
verge to zero upstream at infinity. As for example I, the flow deceler- C T e
ates slightly along the outer wall upstream of the region of turning, but '
unlike example I, a larger deceleration also occurs along the inner wall
in the downstream half of the elbow.
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The pressure coefficient (P - Py) along the inner and outer walls
for example II and for the potential flow solution are presented in fig-
ure 13. The pressure coefficlent for example II converges to zero far-
ther upstream of the region of turning than for potential flow. For
reesons already discussed under éxample I the exit pressure’ coefficient
is greater for example II than for the potential flow solution.

SUPERPOSITION OF SOLUTIONS

The solutions for example I and for potential Pflow can be combined
in linear combinations using the principle of superposition of solutions.
In exsmple II the principle .of superposition of solutions does not apply,
because for this solution the right-hand side of the f£low equation (10)
1s a function of the dependent varieble V.

Pure shear flow for example I. - The streamlines for pure shear
flow are obtalned by subtracting the stream function for potential Flow
from that for example I. Thus the pure shear Plow solution is the solu-
tion for which the net mess flow from wall to wall ecross lines of con-

stant £ is equal to zero. The stream function for pure sheer flow is -

zero on both walls and negative throughout the channel. Idines of con-
stant percentsge of minimum stresm function are presented in figure l4.
The inlet velocity profile for the pure shear flow i1s linear varylng
from -0.25 to 0.25. Velocities are negative along the inner wall and
positive along the outer wall. The average veloclty across eny line of
constant ¢ 18 zero and hence the flow 1s an eddy occupying the entire
channel. The streamlines all begin and end &t the inlet; the zero
streamlines (walls) extend infinitely far downstream. The pure shear
flow has no important physicel significance and is of interest only
methematically. The solution corresponds to fluld motion in the elbow
with zero average flow rate but with the elbow rotating in its plane
with a constant angular velocity equal to one: half the vorticity of

example I. . _— .

S ated flow. - If 25 percent, for exsmple, of the potential flow
solution is added to the bure shesr flow just discussed, the case of a

separated flow on the inner wall upstream of the reglon of turning is
obtained. The streamlines for this flow are presented in figure 15. The
separated flow upstream of the region of turning is forced to reattach by
the acceleration of the flow through the elbow. The solution can also be
reversed, in vwhich case the flow enters at the end with smaller cross
section; and the solution in figure 15 shows flow separation resulting
from deceleration. Thus, some aspects of boundary-layer behavior can be
demonstrated by shear flow solutions thet ignore viscous forces in the
immediate vicinlty of the solution.
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Varilous percen ] o:IL_ pure shear flow. - The potentlal flow solu-
tlon was added to various percentages of the pure shear flow solution,
resulting in the inlet velocity profiles shown in figure 16. These
velocity profiles are for flows with verying emounts of vorticity. The
velocitles along the inner and outer walls are shown in figures 17(e)
and 17(b). The velocitlies decrease on the inner wall and increase on
the outer wall as the negative vortilcilty increases so that the curves
for the inner and outer walls cross. Negative values of Q along the
inner well would indicate the presence of a separated flow reglon on
this wall. The deceleration befare turning becomes more pronounced as
the negative vortlicity increases.

The pressure coefficlent (P - Py) along the channel walls is
shown In figure 18. The pressure coefficlent along each well increases
as the vorticity increases. As & result, the static pressure drop
through the elbow becomes less as the percentage of pure rotetionsl Fflow
becomes larger. The reasons for this behavior have already been dis-
cussed under exasmple I. .

The difference in pressure coefflclent across the channel at any
line of constant § 1s nearly the same for all the cases considered in
figure 18. This fact is shown in figure 19 where the difference in
pressure coefficlent A(P - Py) 1s plotted against ¢.

SUMMARY OF RESULITS

A method of analysis 1s developed far two-dimensionsl shear flows
in channels of arbiltrary shape. Solutions were cbtalned for shesr flows
in a 90° elbow wilth linear and sinusoidal veloelty distributions across
the inlet. Several linear cambinstions of the potentlel flow solution
and the solutlon for linear inlet veloelty distributlon were made to
obtain: (1) the pure shear flow solution (negative vorticity), (2) a
solution that 1s representative In some respects of the behavior of a
separated boundary layer under accelerating flow conditions, and (3) a
series of solutions with equal increments of negetive vortiecity. The
solutions Indicated that:

l. The drop in statlc pressure across the accelerating elbow
decreased as the vortieity of the shear flow increased. This behsvior
is explained by the increased nonuniformity of the inlet velocity with
increesed vorticity.

2. For linear inlet veloclty distributions locel deceleration along
the outer channel wall increased as the negative vorticity of the shear
flow increased. However, for the sinusoldal velocity distribution loeal
decelerations occurred on both walls.



14 . : NACA TN 2736

3. For linear inlet velocity distributions » a8 the negative vortic-
ity of the shear flow increased, the mgnitud.e of the velocitiles
increased on the outer wall and decreased on the inner wall, the loecal
bressure coefficlents increased gradually, end the difference in local
pressure coefficlent on the two walls at corresponding po:Lnts wasg
practically unchanged.

Iewls Flight Propulsion ILaboratory
National Advisory Committee for Aeronautics
Cleveland, Ohlo, April 16, 1952
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APPENDIX A

BYMBOLS

The following symbols are used In this report:

A erea of reglon 1in plane of elbow

g acceleration due to gravity

H Bernoulli constent, dimensionless, equation (3a)

h Bern.ou:l_'l_'l. constant, dimensionsl, equation (3)

N distance along outer normel to stresmline, d_'men.eionless,
expressed as ratlo of wg

P static pressure, dimensionless, equation (lc)

P-Py local pressure coefficlent, equation (18)

A(P-Pi) difference In local pressure coefflclent across channel along
line of comstent ¢ -

D static pressure, dimensional

Q resultant velocity, dimensionless, equation (3b)

q resultant velocity, dimensional

B distance along streamline, dimenslonless, expressed as ratio
of Ve

U veloclty component in X-direction, dimensionless, equation (1d)

u veloclty camponent in X-direction, d.'l.men.;ional

v velocity component in Y-direction, dimensionless, equation (1d)

v velocity camponent in Y-direction, dlmensionsal |

W width of elbow, dimensional

X,Y Certesian co-ordi.nates ; . dimensionless, equation (1d)

X,y Carteslen coordinates, dimensional
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¢ vorticity, equation (11)

n stream function for potential flc;w solution, equation (12a)

e angle between X-axis and streamJJ.ne mea.sured posltive in
counterclockwlse direction

£ velocity potential function for potemtial flow solution,
equation (12a}

o) fluid welght densibty

v stream function for rotetional flow, dimensionless,
equation (6a)

Subscripts:

0 conditions along 1 = O ) -

av average condltion across the channel

e conditions at exit, downstream at infinity

1 conditions at inlet, upstream at infinity

min minimum

(o} cond.:l.tion.é in ;potentié.l flow solution

1 component In n-direction s -7

¢ component in §-direction’

A
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- ' APPENDIX B : T

. TRANSFORMATION OF DIFFERENTTAL EQUATION OF FLOW FROM
XY- TO ¢n-PLARE e —

By definition ¢ and 1 satlsfy the Ceuchy-Riemann differential
equations, equations (12a), so that -

ﬁg+£§= (I) j
ax?  ay?
’ (31)

L -
dx2 axz y

In order to transform the coordinates of equation (10), the following
relations were used

2 B {CTYEY 4 308 () LEELY

. =U°232W 20,7, ¥ +v232w+3"_i B'F__’l (B2a)

%y
axz

°1-a

t2 © Sfon dtax2 9 32
d 3 , %% (d %t dT 3%y d¥
§=352@§) Yﬁ'fl" an2 (31) +S§§3'£+a_rg3ﬁ

232@'+2{]v 27 +U232w aw__§.+aw§ﬁl . BZb
3¢ otem T3ty T a2 (52)

From equations (10), (Bl), (B2a), and (B2b)

i i S
o T T b (25)
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where : L e o : B

Equation (13) is the differentiel equation of flow in £,n-coordinates.
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APFENDIX C

DERIVATION OF EQUATIONS FOR RESULTANT VELOCITY Q AND ITS
COMPONENTS Qg , Qn, U, AND V

The derivatives of W with respect to § and 17 expressed in
terms of X and Y are given by

3V_ 3 X, W )
o9t X3t " F 3t
end $ (c1)
3 _ WA AW
ETRE I A J

But, it can be shown that

cos 60 W

%W

Y sin 90

ET >
X -sineo
ot Te

1

(c2)

Y _ cos 6o
N TR J

so that from equations (62), (Cl), and (C2)

coe O sin 6
Ty 2 +U °

(c3)
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From figure 1 it is seen that

Qg = Q cos(6-6,) ' o 3\

Q(cos 6 cos 6, + sin ¢ sin 6,)

= U cos 60 +V sin Go

Q = Q sin (6-6,) ? (04)
= Q(sin 6 cos 6, - sin 6, cos @)
=V cos 6, - Usin 6, . J
Finally, from equations (C3) and (C4)
Q= q g'_:' (14b)
Ry = - g_‘g (14c)
Likewise, from equation (c';‘i) |
U= Qg cos 6, - Q, sin &,
(15)

V=Q£sin90+qncoseo
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APPENDIX D

INLET AND EXIT CONDITIONS FOR EXAMPLE I

At the inlet of the elbow, upstream a."b infinity, Q, 1s 1/2,
Q 15 0, Q¢ 1s equel to Gy, and ¥ is = function of 17 only, so
that from equations (14b) and (16s8)

1 g
af = 2 (0.25 + 0.50 74) dny
0 0

¥y = 0.5(ny + n42) (164)

Also, at the inlet P 1s constant end H and Q@ are functloms -
of 7 only, so that from equation (4)

~(8), - @

and, therefore, from equation (16a)

1 . 1
f dH, zf (0.25 + 0.50 n4) 0.5 any
H1,0 0

J

1

Hy = Hi,p + 0.25(ns + n12)

or from equetion (16d) and the fact thet H 1s a function of ¥ only
Hy + ¥ (16b)

At the.exit of the elbow, downstream at infinity, Q, is 1.0,
Qp 18 0, Q¢ is equal to Q, and ¥ 1s a function of 1 only.

Therefore, from equation (13)
i AR
anz/, 4



22

which, after integration, becomes -

¥, = 0.875 ng + 0.125 1

Therefore, from equations (14b) and (16e)

Q = 0.875 +.0.25 1,

NACA TN 2736

(18e)

(16£)
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APPERDIX E

INLET AND EXIT CONDITIONS FOR EXAMPIE IT

At the inlet of the elbow, upstresm at infinlty, Qo 1s 1/2,
Qqn is O, Qg is equal to Qi, and ¥ 18 a function of 1 only, so
that from equations (14b) and (19a)

1 Ut
ay, = .’25 sin sy dny
' 0 .

Ty = % (1-cos my) : (194)

Also, at the Inlet P 1s constant and H and { are functions
of 1 only, so that from equation (4) :

aq dH
2q, (=2) = (&
& (d’l) 1 (‘1’1> 1
and, therefore, from equation (19a)

E
1 z [

7
dHy = 5 gin nny cos x=ny dng
Hi,0 JO

.
2
Hy = Hy o + (2—) sln xmy
or from equetion (194) and the fact that E is a function of ¥ only
2
5t
E=Hy+ (v-7°) (19b)

At the exit of the elbow, downstream et infinity, Q, is 1.0,

i8 0, Q¢ 18 equal to Qu, and ¥ is'a function of 7 only.
‘l‘herefore s 5rom equation (13)

(ﬁ>=£-ﬁw
a2/, B8 ¢
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which, after integratlon between limits, becoﬁes
We. = % (l - cos %’le + sin---’zfﬂe) - (19e)
Therefore, from equations (14b) and (19e)
Qe = {-(sin ’—zrqe + cos %‘ﬂe) . (19£)

r
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NACA TN 2736

27

n
- 1.0
- © .78
-~ .50

Figure 5. - Btreanlinss for example I.

1.8

4.0




28

NACA TN 2736
T T T T T T T T Y -
n
1.0 R -
0.70
.50 e S -
B
\ \\
.25 — \\ \ . 4
] N
SENNAA
° W s 1.8 T
) 2.0
2.5
Figure 4. - Lines of ocnstant velooity Q for example I. 5.0 ”~
<]
/] -4
3.5 /]
4
4.0 /
IT
I -
4.5 '
1 1 1 1 1 1 ) 1 1




29

NACA TN 2736
L ]
1.0 4
i - //: - ; ¥ ]
/ ///
- o l “ // / —
1P EREA 1
- AN \\\\\ . L g £~
N —t ’ -
I~ \\ >> ——— l°
}-\\ I.
3 . o ¢ 1.5 .
2.0
i 1
3.0
e
Piguve 5. - Lines of sonatent velooity compoment Qg 5.5 \ 501
. for example I. ) \ Il
-l
R s i
4.0 \ '
A ~y |
| NI i
4.8 /
L 100014 1
L 1 i 1 b —_— 1 - . i -t




1.3

—eee Exanple I
~ ———— Potantial flow
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Bxample I
K1 —=——— Potential flow
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— Example II
— = — = Potentlal flow
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Flgure 15, - Pressure coefficlent along innsr and outar walls far example IT and potentlal flow solution.
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——-—Potantinl Ilow
————Exampls I
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{a) Elbow inlet, upstream at infinity. (b) Xlbow exit, downstream at infinity.

Flgure 18. - Inlat and exit veloolty profiles far potential flow plue various percentages of pure ahsar {low.
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——ew— Potential flow
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Paraosntage of
pure shear flow
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————Potential flow
~—e—Example I
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Pigare 13, - Difference in pressure coefficlent scross channsl faor potsntisl flow plus various percanteges of pure shear flow.
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